Init ML scripts

This commit is contained in:
Logan Cusano
2021-12-22 16:50:35 -05:00
parent e3bcc124e1
commit 24cfac7c33
2 changed files with 171 additions and 0 deletions

View File

@@ -0,0 +1,50 @@
from lyricsgenius import Genius
import json
import re
import os
def get_songs(artists=["Notorious B.I.G", "outkast", "nwa"]):
GENIUS_TOKEN = "gMnJyj87FvjyP2W093rQ_mjo5ZwwLw1u2r0AmcVqYcJ8kkjjW6ZbObeGnS726SrH"
session = Genius(GENIUS_TOKEN, retries=2, timeout=20, sleep_time=0.3)
lyrics = []
# get songs
for artist in artists:
songlist = session.search_artist(artist, max_songs=75, sort='title')
songlist.save_lyrics()
def sanitize_lyrics(input):
notes_re = re.compile('((?:\[[0-9a-zA-Z :()&+-.]+\])(?: \+ \([a-zA-Z -.]+)?(?:\\n)?)')
footer_re = re.compile('((?:EmbedShare)[ ]*(?:URLCopyEmbedCopy))')
multiline_re = re.compile(('(\\n){3,}'))
sanitized_input = notes_re.sub('', input)
sanitized_input = footer_re.sub('', sanitized_input)
sanitized_input = multiline_re.sub('\n\n', sanitized_input)
return sanitized_input
def get_lyrics_from_json(json_file):
artist_dict = json.load(json_file)
ready_lyrics = []
print(artist_dict.keys())
for song in artist_dict['songs']:
sanitized_lyrics = sanitize_lyrics(song['lyrics'])
print(sanitized_lyrics)
ready_lyrics.append(sanitized_lyrics)
return ready_lyrics
def save_sanitized_lyrics():
sanitized_lyrics_list = []
for file in os.listdir("./"):
if file.endswith(".json"):
with open(file, 'r', encoding="utf-8") as read_file:
sanitized_lyrics_list.extend(get_lyrics_from_json(read_file))
print(sanitized_lyrics_list)
with open('./lyrics.txt', 'w+', encoding="utf-8") as lyrics_file:
for lyrics in sanitized_lyrics_list:
print(lyrics)
lyrics_file.write(f"{lyrics}\n")
save_sanitized_lyrics()

View File

@@ -0,0 +1,121 @@
import numpy
import sys
from nltk.tokenize import RegexpTokenizer
from nltk.corpus import stopwords
from keras.models import Sequential, load_model
from keras.layers import Dense, Dropout, LSTM
from keras.utils import np_utils
from keras.callbacks import ModelCheckpoint
class PhraseGenerator():
def __init__(self):
self.training_file = "./lyrics.txt"
self.file = open(self.training_file, 'r', encoding='utf-8')
self.model = Sequential()
self.processed_inputs = self.tokenize_words(self.file)
self.chars = sorted(list(set(self.processed_inputs)))
self.input_len = len(self.processed_inputs)
self.vocab_len = len(self.chars)
self.seq_length = 100
self.x_data = []
self.y_data = []
def nums_to_chars(self):
return dict((i, c) for i, c in enumerate(self.chars))
def chars_to_nums(self):
return dict((c, i) for i, c in enumerate(self.chars))
def tokenize_words(self, input):
input = str(input).lower()
tokenizer = RegexpTokenizer(r'\w+')
tokens = tokenizer.tokenize(input)
filtered = filter(lambda token: token not in stopwords.words('english'), tokens)
return " ".join(filtered)
def train(self):
char_to_num = self.chars_to_nums()
print("Total number of characters:", self.input_len)
print("Total vocab:", self.vocab_len)
for i in range(0, self.input_len - self.seq_length, 1):
print(i)
# Define input and output sequences
# Input is the current character plus desired sequence length
in_seq = self.processed_inputs[i:i + self.seq_length]
# Out sequence is the initial character plus total sequence length
out_seq = self.processed_inputs[i + self.seq_length]
# We now convert list of characters to integers based on
# previously and add the values to our lists
self.x_data.append([char_to_num[char] for char in in_seq])
self.y_data.append(char_to_num[out_seq])
print(f"X-Data:\t{self.x_data}\nY-Data:\t{self.y_data}")
n_patterns = len(self.x_data)
print("Total Patterns:", n_patterns)
X = numpy.reshape(self.x_data, (n_patterns, self.seq_length, 1))
X = X/float(self.vocab_len)
y = np_utils.to_categorical(self.y_data)
self.model.add(LSTM(256, input_shape=(X.shape[1], X.shape[2]), return_sequences=True))
self.model.add(Dropout(0.2))
self.model.add(LSTM(256, return_sequences=True))
self.model.add(Dropout(0.2))
self.model.add(LSTM(128))
self.model.add(Dropout(0.2))
self.model.add(Dense(y.shape[1], activation='softmax'))
filepath = "model_weights_saved.hdf5"
self.model.load_weights(filepath)
self.model.compile(loss='categorical_crossentropy', optimizer='adam')
checkpoint = ModelCheckpoint(filepath, monitor='loss', verbose=1, save_best_only=True, mode='min')
desired_callbacks = [checkpoint]
self.model.fit(X, y, epochs=500, batch_size=256, callbacks=desired_callbacks)
self.model.load_weights(filepath)
self.model.compile(loss='categorical_crossentropy', optimizer='adam')
def generate_text(self):
num_to_char = self.nums_to_chars()
start = numpy.random.randint(0, len(self.x_data) - 1)
pattern = self.x_data[start]
print(pattern)
print("Random Seed:")
print("\"", ''.join([num_to_char[value] for value in pattern]), "\"")
output_string = ""
for i in range(500):
x = numpy.reshape(pattern, (1, len(pattern), 1))
x = x / float(self.vocab_len)
prediction = self.model.predict(x, verbose=0)
index = numpy.argmax(prediction)
result = num_to_char[index]
output_string += str(result)
pattern.append(index)
pattern = pattern[1:len(pattern)]
print(output_string)
print(pattern)
print('Starting')
bot = PhraseGenerator()
print('Training')
bot.train()
print("Generating Text")
bot.generate_text()