Created AI text generator function to fit into WilliBot
This commit is contained in:
@@ -1,121 +1,51 @@
|
||||
import numpy
|
||||
import sys
|
||||
from nltk.tokenize import RegexpTokenizer
|
||||
from nltk.corpus import stopwords
|
||||
from keras.models import Sequential, load_model
|
||||
from keras.layers import Dense, Dropout, LSTM
|
||||
from keras.utils import np_utils
|
||||
from keras.callbacks import ModelCheckpoint
|
||||
import os
|
||||
import argparse
|
||||
from textgenrnn import textgenrnn
|
||||
|
||||
|
||||
class PhraseGenerator():
|
||||
def __init__(self):
|
||||
self.training_file = "./lyrics.txt"
|
||||
self.file = open(self.training_file, 'r', encoding='utf-8')
|
||||
self.model = Sequential()
|
||||
class PhraseGenerator(textgenrnn):
|
||||
def __init__(self, input_training_file_path='./lyrics.txt', input_epochs=1, input_temperature=.5,
|
||||
input_model_file_path='./textgenrnn_weights.hdf5'):
|
||||
# Set logging for Tensorflow
|
||||
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
|
||||
|
||||
self.processed_inputs = self.tokenize_words(self.file)
|
||||
self.chars = sorted(list(set(self.processed_inputs)))
|
||||
# Init vars
|
||||
self.training_file_path = input_training_file_path
|
||||
self.model_file_path = input_model_file_path
|
||||
self.epochs = input_epochs
|
||||
self.temperature = input_temperature
|
||||
|
||||
self.input_len = len(self.processed_inputs)
|
||||
self.vocab_len = len(self.chars)
|
||||
# Init Textgenrnn
|
||||
super().__init__(weights_path=self.model_file_path, allow_growth=True, name='WillieBotModel')
|
||||
|
||||
self.seq_length = 100
|
||||
self.x_data = []
|
||||
self.y_data = []
|
||||
def pg_train(self):
|
||||
self.train_from_file(self.training_file_path, num_epochs=self.epochs, verbose=0, top_n=5, return_as_list=True)
|
||||
|
||||
def nums_to_chars(self):
|
||||
return dict((i, c) for i, c in enumerate(self.chars))
|
||||
def pg_generate(self):
|
||||
generated_text = self.generate(1, temperature=self.temperature, return_as_list=True)
|
||||
print(generated_text[0])
|
||||
|
||||
def chars_to_nums(self):
|
||||
return dict((c, i) for i, c in enumerate(self.chars))
|
||||
|
||||
def tokenize_words(self, input):
|
||||
input = str(input).lower()
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser(description='Description of your program')
|
||||
parser.add_argument('-t', '--train', action='store_true', help='Train the model', required=False)
|
||||
parser.add_argument('-g', '--generate', action='store_true', help='Generate text', required=False)
|
||||
parser.add_argument('-e', '--epochs', action='store', type=int, help='Set amount of epochs (defaults to 5)',
|
||||
required=False)
|
||||
parser.add_argument('-p', '--temp', action='store', type=int,
|
||||
help='Set temperature for generation (defaults to .5)', required=False)
|
||||
parser.add_argument('-f', '--training_file', action='store', type=str,
|
||||
help='Set the training file (defaults to \'./lyrics.txt\')', required=False)
|
||||
args = vars(parser.parse_args())
|
||||
print(args)
|
||||
print('Starting')
|
||||
|
||||
tokenizer = RegexpTokenizer(r'\w+')
|
||||
tokens = tokenizer.tokenize(input)
|
||||
pg = PhraseGenerator(input_epochs=args['epochs'] if args['epochs'] else 1,
|
||||
input_training_file_path=args['training_file'] if args['training_file'] else './lyrics.txt',
|
||||
input_temperature=args['temp'] if args['temp'] else .5)
|
||||
|
||||
filtered = filter(lambda token: token not in stopwords.words('english'), tokens)
|
||||
|
||||
return " ".join(filtered)
|
||||
|
||||
def train(self):
|
||||
char_to_num = self.chars_to_nums()
|
||||
|
||||
print("Total number of characters:", self.input_len)
|
||||
print("Total vocab:", self.vocab_len)
|
||||
|
||||
for i in range(0, self.input_len - self.seq_length, 1):
|
||||
print(i)
|
||||
# Define input and output sequences
|
||||
# Input is the current character plus desired sequence length
|
||||
in_seq = self.processed_inputs[i:i + self.seq_length]
|
||||
|
||||
# Out sequence is the initial character plus total sequence length
|
||||
out_seq = self.processed_inputs[i + self.seq_length]
|
||||
|
||||
# We now convert list of characters to integers based on
|
||||
# previously and add the values to our lists
|
||||
self.x_data.append([char_to_num[char] for char in in_seq])
|
||||
self.y_data.append(char_to_num[out_seq])
|
||||
print(f"X-Data:\t{self.x_data}\nY-Data:\t{self.y_data}")
|
||||
|
||||
n_patterns = len(self.x_data)
|
||||
print("Total Patterns:", n_patterns)
|
||||
|
||||
X = numpy.reshape(self.x_data, (n_patterns, self.seq_length, 1))
|
||||
X = X/float(self.vocab_len)
|
||||
|
||||
y = np_utils.to_categorical(self.y_data)
|
||||
|
||||
self.model.add(LSTM(256, input_shape=(X.shape[1], X.shape[2]), return_sequences=True))
|
||||
self.model.add(Dropout(0.2))
|
||||
self.model.add(LSTM(256, return_sequences=True))
|
||||
self.model.add(Dropout(0.2))
|
||||
self.model.add(LSTM(128))
|
||||
self.model.add(Dropout(0.2))
|
||||
self.model.add(Dense(y.shape[1], activation='softmax'))
|
||||
|
||||
filepath = "model_weights_saved.hdf5"
|
||||
self.model.load_weights(filepath)
|
||||
self.model.compile(loss='categorical_crossentropy', optimizer='adam')
|
||||
|
||||
checkpoint = ModelCheckpoint(filepath, monitor='loss', verbose=1, save_best_only=True, mode='min')
|
||||
desired_callbacks = [checkpoint]
|
||||
|
||||
self.model.fit(X, y, epochs=500, batch_size=256, callbacks=desired_callbacks)
|
||||
|
||||
self.model.load_weights(filepath)
|
||||
self.model.compile(loss='categorical_crossentropy', optimizer='adam')
|
||||
|
||||
def generate_text(self):
|
||||
num_to_char = self.nums_to_chars()
|
||||
start = numpy.random.randint(0, len(self.x_data) - 1)
|
||||
pattern = self.x_data[start]
|
||||
print(pattern)
|
||||
print("Random Seed:")
|
||||
print("\"", ''.join([num_to_char[value] for value in pattern]), "\"")
|
||||
|
||||
output_string = ""
|
||||
for i in range(500):
|
||||
x = numpy.reshape(pattern, (1, len(pattern), 1))
|
||||
x = x / float(self.vocab_len)
|
||||
prediction = self.model.predict(x, verbose=0)
|
||||
index = numpy.argmax(prediction)
|
||||
result = num_to_char[index]
|
||||
|
||||
output_string += str(result)
|
||||
|
||||
pattern.append(index)
|
||||
pattern = pattern[1:len(pattern)]
|
||||
print(output_string)
|
||||
print(pattern)
|
||||
|
||||
print('Starting')
|
||||
bot = PhraseGenerator()
|
||||
print('Training')
|
||||
bot.train()
|
||||
print("Generating Text")
|
||||
bot.generate_text()
|
||||
if args['train']:
|
||||
pg.pg_train()
|
||||
|
||||
if args['generate']:
|
||||
pg.pg_generate()
|
||||
|
||||
Reference in New Issue
Block a user